THE IMPACT OF THE GREAT LENT AND OF THE NATIVITY FAST ON THE BUCHAREST STOCK EXCHANGE

Lecturer Stefanescu Razvan
Lecturer Dumitriu Ramona

Abstract: This paper explores the behavior of the Romanian capital market during the two period of fasting: the Great Lent and of the Nativity Fast. In this investigation we employ closing values of five indexes from Bucharest Stock Exchange for the period January 2007 - August 2016. The sample of data is divided into two sub-samples: the first sub-sample, from January 2007 to June 2012 is associated to a turbulent period on the financial markets, while the second sub-sample, from July 2012 to June 2016, corresponds to a rather quiet period of Romanian capital market. For the first sub-sample we found, only for one index, an increase of the mean returns during the Great Lent and a decline of volatility during the Nativity Fast. For the second sub-sample, the results indicate, for four indexes, the decrease of the mean returns during the Great Lent. We conclude that such evolutions could be associated to the practices of fasting but also to the impact of other factors such as the holiday spirit, the seasonal affective disorder or the year-end stock market behavior.

Keywords: Calendar effects; Great Lent; Nativity Fast; Romanian capital market

JEL classification codes: G02, G14, G19

INTRODUCTION

Since Max Weber (1905) seminal work, various aspects of the relation between religion and economics were approached in the economic literature. Among them it was the behavior of the capital markets during the periods of fasting. Many religions prescribed periods of fasting as ways of purifying the bodies and the souls. The fasting could involve many practices such as the abstinence or reducing some or all food and drink, praying and intensive meditation or avoiding the activities considered as sins (Pargament, 2001). For some of the most spread religions (Catholic Church, Eastern Orthodoxy, Islam etc.) there are precisely delimited periods of fasting which last for many weeks. Some researches from the field of the Behavioral Finance investigated the possibility that such periods of fasting could generate, by affecting investors’ behavior, calendar effects. Obviously, such forms of seasonality contradict the principles of Fama (1970) Efficient Market Hypothesis.

The knowledge about any calendar effect could be exploited in successful strategies of investment. However, the performances of such strategies depend on the persistence in time of seasonality. Sometimes, calendar effects disappeared or even went
to reverse (e.g. Dimson and Marsh, 1998). Empirical researches revealed that the seasonality of a capital market could be affected by the financial crisis (e.g. Holden et al., 2005).

From the perspective of the potential impact on capital markets, one of the most studied periods of fasting is the Ramadan which occurs in the ninth month of the Islamic Calendar. During each of the 29 – 30 days of Ramadan the Muslims are fasting (by refrain from consuming food and drinks, smoking etc.) from dawn until sunset. They are also expected to purify their souls by praying, introspection and refraining from sinful behavior. Husain (1998) studied the behavior of the Pakistani equity market from 1989 to 1993. The results indicated that during Ramadan the volatility of the stock returns significantly decreased, while the mean returns didn’t suffer relevant changes. The decline in the volatility was explained by a lower economic activity in the days of the Ramadan and by the fact that Muslims avoid the stock market speculation during this sacred period. Seyyed et al. (2005) also found a significant decline in volatility in the Muslim holy month of Ramadan for the Saudi Arabian stock market from 1985 to 2000. Białkowski et al. (2012) investigated the evolution of the capital markets from 14 predominantly Muslim countries from 1989 to 2007, finding that during Ramadan the stock returns were significantly higher and less volatile than for the rest of the year. Such behavior was explained by the impact of the religious month on the investors’ mood through encouraging optimistic beliefs.

In this paper we approach the effects of two periods of fasting on the Bucharest Stock Exchange (BSE). More than 80 percents of the Romanian population belong to the Eastern Orthodoxy which has two main periods of fasting: the Great Lent and the Nativity Fast. The Great Lent lasts for seven weeks before the day of the Easter which vary from a year to another. The Nativity Fast starts, every year, at November 15 and it lasts until the day of Christmas, December 25. During these two periods of fasting, the Eastern Orthodoxy believers are expected to pray more often than in the rest of the year and to refrain from meat and dairy products. As in the case of Ramadan, refraining from specific foods could affect investors’ metabolism (Sarri et al., 2003). However, the influence of the increasing intensity of praying and meditation on investors’ mood could not be the same as those revealed from Ramadan. During the Great Lent, the meditation on the Passion of Jesus would induce rather pessimist beliefs than optimistic ones. Instead, in the case of Nativity Fast, the meditation on the birth of Jesus could, indeed, generate optimistic beliefs.

We study the potential effects of the fasting practices on the mean and volatility of BSE returns by employing GARCH models. We use closing daily values of five BSE indexes for a period of time that starts in January 2007, when Romania became a member of the European Union, and end in August 2016. During this period of time the Romanian capital market was affected by various circumstances. From January 2007 until the middle of year 2012, the effects of some processes (Romania’s adhesion to European Union, the 2007 - 2008 global financial crises, a hard recession of the national economy etc.) induced significant turbulences on BSE. The evolution of the Romanian capital market after the middle of the year 2012 could be considered as relative quiet. We perform our analysis separate for turbulent and quiet times.
The rest of this paper is organized as it follows: the second part describes the data and the methodology employed to investigate BSE behavior during the two periods of fasting, the third part presents the empirical results and the fourth part concludes.

DATA AND METHODOLOGY

In this investigation about the effects of fasting on the Romanian capital market we use the closing values of five important indexes of BSE: BET, BET FI, BET XT, BET NG and BET BK (the Table 1 offers the compositions of these indexes). We study the evolutions of these indexes for a sample of data from January 2007 to August 2016. In order to reveal the differences between a quiet period and a turbulent one, we split this sample in two sub-samples:

- the first sub-sample, from January 2007 to June 2012, corresponding to a turbulent period;
- the second sub-sample, from July 2012 to August 2016, corresponding to a relative quiet period (Figure 1).

The values of BET BK, which was compounded since July 2012, are employed only for the analysis on the second sub-sample.

<table>
<thead>
<tr>
<th>Index</th>
<th>Composition</th>
<th>First sub-sample</th>
<th>Second sub-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET</td>
<td>Contains the shares of most liquid 10 companies listed on the BSE regulated market</td>
<td>January 2007 – June 2012</td>
<td>July 2012 – August 2016</td>
</tr>
<tr>
<td>BET FI</td>
<td>The five investment funds (SIFs)</td>
<td>January 2007 – June 2012</td>
<td>July 2012 – August 2016</td>
</tr>
<tr>
<td>BET XT</td>
<td>Contains the most liquid 25 shares traded on the BSE, including SIFs</td>
<td>January 2007 – June 2012</td>
<td>July 2012 – August 2016</td>
</tr>
<tr>
<td>BET NG</td>
<td>Contains the shares of companies which have the main business activity located in the energy sector and the related utilities</td>
<td>January 2007 – June 2012</td>
<td>July 2012 – August 2016</td>
</tr>
<tr>
<td>BET BK</td>
<td>Contains the shares of the most liquid 25 companies purposed, but it is calculated in a different way than BET XT; it is meant to be a benchmark for investment on BSE</td>
<td>x</td>
<td>July 2012 – August 2016</td>
</tr>
</tbody>
</table>

Source: Bucharest Stock Exchange

For each index the logarithmic returns \(r_{i,t} \) are calculated as:

\[
r_i = \left[\ln(P_t) - \ln(P_{t-1}) \right] \times 100
\]

where \(P_t \) and \(P_{t-1} \) are the closing prices of an index on the days \(t \) and \(t-1 \), respectively.

We analyze the stationarity of the indexes returns by employing the Augmented Dickey – Fuller (1979) unit root test with intercept as deterministic term. For each of the test regressions we use the Akaike (1973) Information Criteria to choose the number of lags.
The fasting effect impact on the returns mean and volatility is revealed by the Engle (1982) and Bollerslev (1986) GARCH model with two dummy variables:

- \(GL_t \) is a dummy variable which takes value 1 for every day of the period of Great Lent and zero otherwise;
- \(NF_t \) is a dummy variable which takes value 1 for every day of the period of Nativity fasting and zero otherwise.

The impact of the fasting on returns mean is captured by the GARCH conditional mean equation:

\[
 r_t = \mu_0 + \mu_1 \times GL_t + \mu_2 \times NF_t + \sum_{k=1}^{\infty} (\xi_k \times r_{t-k}) + \epsilon_t
\]

where:

- \(\mu_0 \) is a constant reflecting the returns from the days without Great Lent and Nativity fasting periods;
- \(\mu_1 \) is a coefficient which reflects the differences between the returns from the days of Great Lent fasting and those from the days without the two fasting periods;
- \(\mu_2 \) is a coefficient which reflects the differences between the returns from the days of Nativity fasting and those from the days without the two fasting periods;
- \(\xi_k \) is a coefficient of the k-order lagged returns;
n represents the number of lagged returns;
- ε_i is the error term.

The influence of the period of fasting on the volatility of the returns is expressed by the GARCH conditional variance equation:

$$\sigma_i^2 = \omega + v_1 \times GL_i + v_2 \times NF_i + \sum_{k=1}^{q} \alpha_k \cdot \varepsilon_i^2 + \sum_{l=1}^{p} (\beta_l \cdot \sigma_{i-l}^2)$$ \hspace{1cm} (3)

where:
- σ_i^2 is the conditional variance of the returns;
- ω is a constant term reflecting the volatility of the returns from the days without the two periods of fasting;
- v_1 is a coefficient which reflects the Great Lent effects on the stocks volatility;
- v_2 is a coefficient which reflects the Nativity fasting effects on the stocks volatility;
- α_k (k = 1, 2, …q) are the coefficients associated to the squared values of the lagged values of error term from the conditional mean equation;
- q is the number of lagged values of the error term;
- β_l (l = 1, 2, …p) are coefficients associated to the lagged values of the conditional variance;
- p is the number of lagged values of conditional variance.

The values of k, p and q are determined by Ljung and Box (1978) methodology.

EMPIRICAL RESULTS

The Table 2 presents the results of the Augmented Dickey–Fuller unit root test for the returns of BSE indexes. They indicate the stationarity, for both sub-samples, of the returns for all indexes.

<table>
<thead>
<tr>
<th>Index</th>
<th>First sub-sample</th>
<th>Second sub-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of lags</td>
<td>Test statistics</td>
</tr>
<tr>
<td>BET</td>
<td>6</td>
<td>-9.75974***</td>
</tr>
<tr>
<td>BET FI</td>
<td>4</td>
<td>-12.3891***</td>
</tr>
<tr>
<td>BET XT</td>
<td>6</td>
<td>-9.72955***</td>
</tr>
<tr>
<td>BET NG</td>
<td>2</td>
<td>-10.2575***</td>
</tr>
<tr>
<td>BET BK</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Note: *** means significant at 0.01 level.

The coefficients of conditional mean equation for the first sub-sample are reported in the Table 3. We found a significant positive value of the coefficient of the GL variable for BET NG index.

<table>
<thead>
<tr>
<th>Index</th>
<th>First sub-sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficients of conditional mean equation for the first sub-sample</td>
</tr>
</tbody>
</table>
The Table 4 presents the coefficients of the conditional variance equation for the first sub-sample. For the same BET NG index we found a significant negative value for the NF variable.

Tab. 4. Coefficients of the conditional variance equation for the first sub-sample

<table>
<thead>
<tr>
<th>Index</th>
<th>BET</th>
<th>BET FI</th>
<th>BET XT</th>
<th>BET NG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant term</td>
<td>0.1412**</td>
<td>0.1677**</td>
<td>0.1123**</td>
<td>0.1558*</td>
</tr>
<tr>
<td></td>
<td>(0.0562)</td>
<td>(0.0698)</td>
<td>(0.0485)</td>
<td>(0.0912)</td>
</tr>
<tr>
<td>Coeff. of GL variable</td>
<td>-0.0663</td>
<td>-0.0930</td>
<td>-0.0516</td>
<td>-0.0406</td>
</tr>
<tr>
<td></td>
<td>(0.0455)</td>
<td>(0.0685)</td>
<td>(0.0435)</td>
<td>(0.0574)</td>
</tr>
<tr>
<td>Coeff. of NF variable</td>
<td>-0.0770</td>
<td>0.0051</td>
<td>-0.0318</td>
<td>-0.1106*</td>
</tr>
<tr>
<td></td>
<td>(0.0509)</td>
<td>(0.1151)</td>
<td>(0.0596)</td>
<td>(0.0662)</td>
</tr>
<tr>
<td>alpha</td>
<td>0.2149***</td>
<td>0.1451***</td>
<td>0.1742***</td>
<td>0.2051***</td>
</tr>
<tr>
<td></td>
<td>(0.0550)</td>
<td>(0.0397)</td>
<td>(0.0478)</td>
<td>(0.0682)</td>
</tr>
<tr>
<td>beta</td>
<td>0.7719***</td>
<td>0.8394***</td>
<td>0.8146***</td>
<td>0.7778***</td>
</tr>
<tr>
<td></td>
<td>(0.0545)</td>
<td>(0.0424)</td>
<td>(0.0480)</td>
<td>(0.0759)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in round brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively.

The coefficients of the conditional mean equation for the second sub-sample are reported in the Table 5. For four indexes (BET, BETFI, BET XT and BET BK) the coefficients of the GL variable are significant negative.

Tab. 5. Coefficients of the conditional mean equation for the second sub-sample

<table>
<thead>
<tr>
<th>Index</th>
<th>BET</th>
<th>BET FI</th>
<th>BET XT</th>
<th>BET NG</th>
<th>BET BK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant term</td>
<td>0.04029</td>
<td>0.0454</td>
<td>0.0437*</td>
<td>0.0112</td>
<td>0.0517**</td>
</tr>
<tr>
<td></td>
<td>(0.0256)</td>
<td>(0.0307)</td>
<td>(0.0233)</td>
<td>(0.0270)</td>
<td>(0.0221)</td>
</tr>
<tr>
<td>Coeff. of GL variable</td>
<td>-0.1110*</td>
<td>-0.1749***</td>
<td>-0.1397**</td>
<td>-0.1063</td>
<td>-0.1873***</td>
</tr>
<tr>
<td></td>
<td>(0.0613)</td>
<td>(0.0589)</td>
<td>(0.0572)</td>
<td>(0.0682)</td>
<td>(0.0564)</td>
</tr>
<tr>
<td>Coeff. of NF variable</td>
<td>-0.0008</td>
<td>0.0144</td>
<td>0.0181</td>
<td>-0.0175</td>
<td>0.0016</td>
</tr>
<tr>
<td></td>
<td>(0.0675)</td>
<td>(0.1014)</td>
<td>(0.0502)</td>
<td>(0.0777)</td>
<td>(0.0620)</td>
</tr>
<tr>
<td>First order lagged returns</td>
<td>0.0811**</td>
<td>0.0764**</td>
<td>0.0850***</td>
<td>x</td>
<td>0.07658**</td>
</tr>
<tr>
<td></td>
<td>(0.0321)</td>
<td>(0.0329)</td>
<td>(0.0316)</td>
<td></td>
<td>(0.0333)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in round brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively.

For the second sub-sample we found, for the conditional variance equation, no significant value of the coefficients of GL and NF variables (Table 6).
Tab. 6. Coefficients of conditional variance equation for the second sub-sample

<table>
<thead>
<tr>
<th>Index</th>
<th>BET</th>
<th>BET FI</th>
<th>BET XT</th>
<th>BET NG</th>
<th>BET BK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant term</td>
<td>0.0847** (0.0373)</td>
<td>0.1738 (0.1127)</td>
<td>0.0950** (0.0474)</td>
<td>0.0661** (0.0314)</td>
<td>0.1340* (0.0758)</td>
</tr>
<tr>
<td>Coeff. of GL variable</td>
<td>-0.0077 (0.0250)</td>
<td>-0.0297 (0.0506)</td>
<td>-0.0100 (0.0257)</td>
<td>0.0283 (0.0270)</td>
<td>-0.0003 (0.0294)</td>
</tr>
<tr>
<td>Coeff. of NF variable</td>
<td>0.0123 (0.0347)</td>
<td>-0.0300 (0.0686)</td>
<td>0.0219 (0.0311)</td>
<td>0.0256 (0.0253)</td>
<td>0.0012 (0.0435)</td>
</tr>
<tr>
<td>alpha</td>
<td>0.1171*** (0.0346)</td>
<td>0.2309*** (0.0750)</td>
<td>0.12980*** (0.0381)</td>
<td>0.1302*** (0.0407)</td>
<td>0.1990*** (0.0655)</td>
</tr>
<tr>
<td>beta</td>
<td>0.7549*** (0.0732)</td>
<td>0.5915*** (0.1780)</td>
<td>0.7083*** (0.1001)</td>
<td>0.7772*** (0.0687)</td>
<td>0.5446*** (0.1862)</td>
</tr>
</tbody>
</table>

Notes: Standard errors in round brackets; ***, **, * mean significant at 0.01, 0.05, and 0.1 levels, respectively.

CONCLUSIONS

In this paper we investigated the Romanian capital market evolution during two periods of fasting: Great Lent and Nativity Fast. The results revealed significant differences between the turbulent and the quiet times. For the first sub-sample, which corresponds to the turbulent times, we found different behavior during the fasting periods only for one of the five indexes. The returns of BET NG index experienced an increase of the mean returns during the Great Lent and a decline in volatility during the Nativity Fast. Instead, for the second sub-sample, associated to the relative quiet times, we found, for the other four indexes, declines of the mean returns during the Great Lent. The significant turbulences from the first sub-sample could annihilate the effects of fasting on BSE. The different evolution of BET NG index comparing to the other BSE indexes could be explained by its composition. This index reflects the share prices of companies related to the energy sector which were affected by the significant changes from the oil markets.

The BSE behavior during the two fasting periods could be explained by several facts. The impact of the fasting on investors’ metabolism could affect their propensity to the capital market transactions. We can’t totally exclude a pessimist mood induced by the Great Lent (this could explain the decrease in mean returns for the second sub-sample) and an optimist mood generated by the Nativity Fast. Usually, in Romania, the schools have holidays around the Easter and for the last week of the Nativity Fast. As Coakley et al. (2007) revealed many investors are distracted, in such periods, by child care activities. Moreover, the last week of Nativity Fast coincides with a period of holiday for a large proportion of Romanian employees. There are also many employees that take short holidays around the Easter. The holiday spirit could have a significant influence on some investors’ behaviors (e.g. Hong and Yu, 2009).

Sometimes, the Great Lent ends near the beginning of May when, according to Bouman and Jacobsen (2002), the stock returns began to decrease. The stock returns during the Nativity Fast are sometimes affected by the so-called “year-end stock market behavior” which refers to the substantial selling of stocks whose prices experienced recently descendant evolutions (e.g. Dyl, 1977). The public holidays for the day of Easter and Christmas also influenced the stock returns for the two fasting periods.
The eventual optimist moods induced to the investors by Nativity Fast could be annihilated by the interferences of some classical calendar effects. According to Hirshleifer and Shumway (2003) the winter specific weather causes a decline on the stock returns. Kamstra et al. (2003) also considered that Seasonal Affected Disorder (SAD) effect was responsible for the stock prices descendant evolutions during the winter.

The analysis of fasting period impact on BSE has to take into consideration the fact that in Romania the religion rules are not strictly followed as, for example, in the Muslim countries. Quite often, the Eastern Orthodoxy believers practise the fasting only for the first and for the last week of Great Lent and of Nativity Fast. Usually, the investors from Romanian capital market are not very rigid in the practice of fasting. It also has to be taken into consideration the substantial influence of the foreign capitals on BSE.

This investigation on the impact of the two period of fasting on the Romanian capital markets could be extended to other countries.

References

