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Abstract – In this paper we consider the application of the Markovian decision 

processes for decision making in defining an optimal policy in order to control inventory 

systems. We assume that the demand process has a stochastic nature and can be 

described using a Poisson distribution. To define an optimal control policy, based on the 

Markovian decision processes we use a proper cost structure, sets of possible solutions and 

final number of states, described applying a proper transition matrix. In order to realize the 

optimal control policy we use the linear programming approach. 
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1.   INTRODUCTION 
 

The Markovian decision processes are a serious method to formulate models and to 

 define optimal control strategies to a wide set of systems. Such a method  is applied to 

solve problems in various domains like queuing and inventory models, production, service, 

transport and etc. Taha (2006) and Gatev (2002). The theory of the Markovian decision 

processes studies the optimization of discrete-time stochastic systems. Each control policy, 

which is investigated, poses a stochastic process and values of the cost function associated 

with this process. One of the existing methods to define an optimal policy to control the 

inventory models is that of the linear programming (LP), see Taha (2006) and Vanderbei 

(2001). 

 Here we conduct optimal control of a particular inventory system.  The aim of the 

paper is to present the application of the LP method to optimally control the considered 

inventory system. Further the manuscript is structured as follows. In the following Section 

we give theoretical aspects for the Markovian decision processes with LP. In Section 3 we 
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perform the optimal control of the investigated inventory system applying the linear 

programming method. Finally in Section 4 we end up with some concluding remarks. 

 

2.   MARKOVIAN DECISION PROCESSES – THEORETICAL ASPECTS 

The Markovian decision processes are defined as a stochastic system, in which the 

occurrence of a particular state depends on the previous state of the system. The stochastic 

process being a family of random elements is a Markov process with the following 

Markovian property:  
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for ,2,1,0=t and for each combination of i , j , 110 ,..., −tKKK .  

 The probability   ijtt piXjXP ===+ /1
 is considered to be  a transition probability 

and expresses the conditional probability of the system to make a transition from state i to 

state j. This probability is called one step transition probability. With )(n
ijp  we yield the n – 

step transition probability. It represents the conditional probability that the random element 

X, being in state i in moment t, moves to state j after exactly n steps. The expressions 

below are true for the conditional probabilities: 
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The transition probabilities can be given in a matrix form 

         

 
 

 

 

 

 

A policy R is a rule for undertaking a decision for every period of time. It can use the 

whole information for the previous observations till t.  This is the complete history of the 

system, containing the set of the states 
tXXX ,..., 10
and the undertaken decisions

110 ,..., − t . For most of the problems met in practice is enough to be accepted that the 

policy depends on the observed state in the moment t,  
tX  and the possible decisions. The 

policy R can be observed as a statement for undertaking a decision )(Rdi
, in case the 

system is in state i, Mi ,1= .  A policy can be completely described using the elements 

 )(),...(),( 10 RdRdRd M
. 

State 0 1 … M 

0 )(
00
np  

)(
01
np  

 )(
0
n
Mp  

1 )(
10

np  
)(

11
np  

 )(
1

n
Mp  

      

M )(
0

n
Mp  

)(
1

n
Mp  

 )(n
MMp  



 

 

 
VANGUARD SCIENTIFIC INSTRUMENTS IN MANAGEMENT, vol. 18, no. 1, 2022, ISSN 1314-0582 

 

An alternative to this representation is a policy described using the following 

matrix:    
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where K is the number of the possible solutions. In this representation in each row of the 

matrix R a single number one should exist and the rest of the elements should be zero. If 

the element 1=iKD  , then the interpretation is the following: solution K is undertaken, if the 

state of the system is i. 

 

     The expected costs can be represented as a function of the variables 
ikD . The 

variables 
ikD  should have a value of zero or one, this means usage of bulean integer 

programming [4]. In the standard set up the linear programming problem requires 

continuous variables, which gives motivation an extended interpretation of term policy to be 

searched. Let the rule for undertaking a solution 
ikD  is defined using the conditional 

probability: 

                       istateKsolutionPDik === / , Mi ,1= , Kk ,1=                              (3)                           

           Defined in this way the policy is called  randomized, for a difference from the 

deterministic policy for which 1=ikD  or 0=ikD . The randomized policy is characterized with 

elements 10  ikD .  

         Assume that iky  is the unconditional probability, that the system is in state i  and 

solution K is undertaken.  

 

                                   istateandKsolutionPyik === .                    (4) 

 

 This probability can be represented like this: 

 

   istatePistateKsolutionPyik ==== ./ , 

or 

                                                   iikik Dy = .                                        (5) 

 

  The following equality is valid: 
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             Therefore the solution 
ikD  can be represented using the linear programming 

problem variables, i.e. iky : 
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            The linear programming problem constraints are the following: the sum of the 

steady-state probabilities is one 1
0

=
=

M

i
i . 

 Also the following constraint follows has to be satisfied: 
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from the approach to calculate the steady-state probabilities 
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the following constraint is obtained:  
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The linear programming problem variables are the unconditional probabilities 

0iky , Mi ,0= , Kk ,1= . 

     The performance specification is the average steady-state expected cost per unit time:  
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3. OPTIMAL INVENTORY CONTROL USING LP 

 

     We consider the linear programming method to optimally control a particular 

inventory system. There is a shop for electronic devices, which can be ordered weekly. Let 

with 1D , 2D , … we denote the demand of a certain TV set for the period one, period two 

and etc.  We assume that iD  are independent and identically distributed random variables 

described using the Poisson distribution and are characterized with parameter  . Let 0X  

be the number of available TV devices in the beginning, and x1 - the number of TV sets at 

the end of the first period, x2 - the number of TV sets at the end of the second period and so 



 

 

 
VANGUARD SCIENTIFIC INSTRUMENTS IN MANAGEMENT, vol. 18, no. 1, 2022, ISSN 1314-0582 

 

on. At the end of each Saturday we make a delivery request, which can be accomplished on 

Monday early in the morning. We have to apply an optimal control policy to satisfy the 

inventory storage and the customers’ demand. When the demand exceeds the available 

items in the storage then we have losses of not being able to satisfy the demand. The 

considered cost structure requires to have in mind penalty losses of 500 Leva for each unit 

of not accomplished demand. If a number of z items are required, the corresponding costs 

amount to 50+250z Leva. If items are not ordered then delivery costs are not taken into 

account. The storage costs are not considered in this case. We suppose that the maximum 

number of lots of TV sets available in the inventory is limited to four /4/.  

In this manuscript we have to use the linear programming method aiming at 

computing an optimal control policy using the Markovian decision processes. The variable 

1x  describes the state of the systems i.e., the number of initial lots at the end of the first 

period t, and the values which xt  can obtain are: xt =0, 1, 2, 3, 4. The decisions which can 

be undertaken are four in Tab1.: 
   Table 1. Undertaken decisions and their description 

 

  
Decision 

         Action 

         0  No inquiry is made 

         1  Inquiry for 1item is 
made 

         2 Inquiry for 2 items 

         3 Inquiry for 3 items 

         4  Inquiry for 4 items 
       Source: Own research 

The sets of possible solutions vary depending on the states, the transition matrices 

for decisions 0, 1, 2, 3 and 4 are shown in Tab2., Tab.3, Tab.4, Tab.5 and Tab.6: 

 
Table 2.Transition matrix for decision 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Own research 
 

 
 
 
 
 
 
 

Decision 0 

State 0 1 2 3 4 

0 1 0 0 0 0 

1  1tP D 

 

 0tP D =

 
0 0 0 

2  2tP D 

 

 1tP D =

 

 0tP D =  
0 0 

3  3tP D 
  2tP D =

 
 1tP D =

  0tP D =

 

0 

4  4tP D    3tP D =

 

 2tP D =

 

 1tP D =

 

 0tP D =
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Table 3.Transition matrix for decision 1. 

 
 
 
 

 

 

 
 
 
 
 

 
Source: Own research 

 
               Table 4. .Transition matrix for decision 2. 

 
 

 

 

 

 

 

 

 

Source: Own research 
       

          Table 5. Transition matrix for decision 3. 
 

 

 

 

 

 

 
 

 
Source: Own research 

 
        Table 6. Transition matrix for decision4.  

 
 

 

 

 

 

 
 
Source: Own research 

 

Desicion 1 

State 0 1 2 3 4 

0  1tP D 

 

 0tP D =

 
0 0 0 

1  2tP D 
  1tP D =

 

 0tP D =
 

0 0 

2  3tP D 
 

 2tP D =
 

 1tP D =
  0tP D =

 

0 

3  4tP D 
  3tP D =

 

 2tP D =

 

 1tP D =

 

 0tP D =

 

4 Banned 

Desicion 2 

State 0 1 2 3 4 

0  2tP D 

 

 1tP D =   0tP D =  
0 0 

1  3tP D 

 
 2tP D =

  1tP D =
  0tP D =  0 

2  4tP D 

 

 3tP D =   2tP D =

 

 1tP D =   0tP D =

 

3 Banned 

4 Banned 

Desicion 3 

State 0 1 2 3 4 

0  3tP D 

 
 2tP D =

  1tP D =

 
 0tP D =  0 

1  4tP D 

 

 3tP D =   2tP D =

 

 1tP D =

 

 0tP D =

 

2 Banned 

3 Banned 

4 Banned 

Desicion 4 

State 0 1 2 3 4 

0  4tP D 

 

 3tP D =   2tP D =

 

 1tP D =

 

 0tP D =

 

1 Banned 

2 Banned 

3 Banned 

4 Banned 
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 The expected costs for one period Cik for each state for all of the decisions are 
presented in Tab. 7: 

 
 

Table 7. Expected costs 
 

i 
\ 
k 

0 1 2 3 4 

0 521.05 445.7 417.4 461.75 556.35 

1 278.17 292.4 336.75 431.35 ∞ 

2 152.4 211.75 306.35 ∞ ∞ 

3 71.75 186.35 ∞ ∞ ∞ 

4 41.35 ∞ ∞ ∞ ∞ 
 

Source: Own research 
 

The optimal control policy of the inventory system is based on the linear 

programming method formulation and we use the software package MATLAB and 

especially the function linprog,see Vanderbei (2001) and Sierksma(2015), to perform the 

computations. The formulas presented in the previous section are applied, which gives the 

opportunity to obtain the results below.  

In the LP approach we do not compare different control policies at different steps 

here the optimal policy is computed directly using the considered optimization procedure. 

The matrix of the unconditional probability is the following 

 

 























=

0000.00000.00000.00000.01031.0

0000.00000.00000.00000.02384.0

0000.00000.02707.00000.00000.0

0000.02020.00000.00000.00000.0

1859.00000.00000.00000.00000.0

iky

 
 

 This means that the matrix representation of the deterministic optimal policy is of 

the following type 
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00001

00001

00100

01000

10000

ikD , 

 

thus when the system is in states 0, 1 ,2 ,3, 4 we undertake decisions 4, 3, 2, 0, 0. The 

optimal value of the cost specification is 294.80 EURO. 
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5. CONCLUSIONS 

  In this manuscript we investigated the application of the Markovian decision 

processes in defining an optimal policy in order to control a concrete inventory 

system using the linear programming method. The obtained results are acceptable 

and can inspire our future investigations in order to optimally control more realistic 

inventory systems using the LP method. 
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