EFFICIENT FINANCIAL ENGINEERING SOLUTIONS IN OPTION PRICING
Abstract
In this paper, together with the financial analysis in option pricing, we
make a short review of most popular and frequently used computational methods in
Quantitative Finance that could be used as a benchmark for obtaining highly accurate
numerical results. By classifying some of the most competitive methods in option pricing
according to their efficiency we try to introduce the notion of ‘efficient financial engineering
solution’ taking into account not only quantitative characteristics such as accuracy and real
time but also qualitative criteria and factors such as universality, complexity of computer
implementation and application, compatibility, understandability, and etc.
References
Old Approaches and New Trends, Bull. Korean Math. Soc. 48 (2011), No. 4, pp. 791- 812,
http://pdf.medrang.co.kr/kms01/BKMS/48/BKMS-48-4-791-812.pdf
2. M. Airoldi, A Perturbative Moment Approach to Option Pricing, (January 26,
2004). Available at SSRN: http://ssrn.com/abstract=4970
3. I. Alexieva, M. Milev, N. Penev, Main Concepts and Problems in Option Pricing,
Quantitative Methods: Advantages and Disadvantages, Trakia Journal of Sciences, Vol. 9,
Suppl. 2, 295-301, 2011, Proceedings of the Second International Scientific Conference
‘Business and Regional Development’, Faculty of Economics, Trakia University, Bulgaria,
,23-24 June 2011, ISSN 1313-7069 (print), ISSN 1313-3551 (online).
4. A. D. Andricopoulos, M. Widdicks, D. P. Newton, P. W. Duck, Extending
quadrature methods to value multi-asset and complex path dependent options, Journal of
Financial Economics, Vol. 83, Issue 2, February 2007, 471-499,
http://www.sciencedirect.com/science/article/pii/S0304405X06001620
5. F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of
Political Economy, 81, 637 – 659, 1973.
6. P. P. Boyle, Y. Tiam, An explicit finite difference approach to the pricing of barrier
options, Applied Mathematical Finance, Vol. 5, 17 - 43, 1998.
7. P. Brandimarte, Numerical Methods in Finance: A MATLAB-based introduction,
John Wiley & Sons, New York, 1st ed. 2001. ISBN: 0471396869.
8. P. Brandimarte, Numerical methods in finance and economics: a MATLAB-based
introduction, 2nd Edition, 2006, John Wiley & Sons, New York, ISBN: 0471745030.
9. A. Buryak, I. Guo, New Analytic Approach to Address Put–Call Parity Violation
due to Discrete Dividends, Applied Mathematical Finance, Vol. 19, Issue 1, 37-58, 2012
10. Tian-Shyr Dai, Chuan-Ju Wang, Yuh-Dauh Lyuu, Yen-Chun Liu, An efficient
and accurate lattice for pricing derivatives under a jump-diffusion process, Applied
Mathematics and Computation, Vol. 217, Issue 7, 1 December 2010, 3174-3189, ISSN:
0096-3003,
http://www.sciencedirect.com/science/article/pii/S0096300310009148
11. N. Caia, N. Chenb, X. Wanb, Pricing double-barrier options under a flexible
jump diffusion model, Operations Research Letters, Vol. 37, (3), 2009, 163–167,
http://www.sciencedirect.com/science/article/pii/S0167637709000364
12. J. Duan , E. Dudley , G. Gauthier, J. Simonato, Pricing Discretely Monitored
Barrier Options by a Markov Chain, Journal of Derivatives, Vol. 10, (n. 4), 9-31 (2003),
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.2335&rep=rep1&type=pdf
13. D. J. Duffy, A Critique of the Crank-Nicolson Scheme: Strengths and
Weaknesses for Financial Instrument Pricing, Wilmott magazine, 68-76, 2004,
http://www.wilmott.com/pdfs/071203_duffy.pdf
14. R. J. Elliott, T. K. Siu, L. Chan, Journal of Computational and Applied
Mathematics, On pricing barrier options with regime switching, 13 August 2013,
http://www.sciencedirect.com/science/article/pii/S0377042713003786
15. P. Glassermann, Monte Carlo Methods in Financial Engineering, Springer, New
York, 2004.
16. http://global-derivatives.com/index.php/pricing-models-othermenu-41
17. G. Cao, R. MacLeod, Pricing Exotic Barrier Options with Finite Differences
(2005), SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=989641
18. R. Company, L. Jódar, G. Rubio, R.J. Villanueva, Explicit solution of Black–
Scholes option pricing mathematical models with an impulsive payoff function,
Mathematical and Computer Modelling, Vol. 45, Issues 1–2, 2007, 80-92, ISSN: 0895-
7177, http://www.sciencedirect.com/science/article/pii/S0895717706001816
19. R. Company, A.L. González, L. Jódar, Numerical solution of modified Black–
Scholes equation pricing stock options with discrete dividend, Mathematical and Computer
Modelling, Vol. 44, Issues 11–12, 1058 – 1068, 2006, ISSN: 0895-7177,
http://www.sciencedirect.com/science/article/pii/S0895717706001300
20. R. Company, L. Jódar, J. Pintos, A numerical method for European Option
Pricing with transaction costs nonlinear equation, Math. and Comp. Modelling, Vol. 50, 5–
6, 2009, 910-920
http://www.sciencedirect.com/science/article/pii/S0895717709001538
21. R. Cont, P. Tankov, Financial Modeling with Jump Processes, 59Chapman &
Hall/CRC, 2004.
22. M. Costantino, C. Brebbia, Computational Finance And Its Applications II, WIT
Press, 2006, ISBN-10: 1845641744, ISBN-13: 978-1845641740.
23. M. Gaudenzi, A. Zanette, Pricing American Options with Discrete Dividends by
Binomial Trees, Decisions in Economics and Finance, Vol. 32, (2), 2009, 129 - 148,
Parisian options in:
http://hal.archives-ouvertes.fr/docs/00/72/19/58/PDF/RR-8033.pdf
24. A. Golbabai, D. Ahamadian, M. Milev, Radial Basis Functions with Application to
Finance: American Put Option under Jump Diffusion, Mathematical and Computer
Modelling, Vol. 55 (n.3-4) (2012), 1354-1362, 2012, doi:10.1016/j.mcm.2011.10.014,
http://www.sciencedirect.com/science/article/pii/S0895717711006066, ISSN: 0895-7177.
25. A. Golbabai, L. V. Ballestra, D. Ahmadian, A Highly Accurate Finite Element
Method to Price Discrete Double Barrier Options, Computational Economics, DOI
10.1007/s10614-013-9388-5, 2013
http://link.springer.com/article/10.1007%2Fs10614-013-9388-5
26. M. Gradock, D. Health, E. Platen, Numerical inversion of Laplace transforms: a
survey of techniques with application of derivative pricing,
http://www.risk.net/digital_assets/4436/v4n1a3b.pdf
27. D. Higham, An Introduction to Financial Option Valuation, Cambridge University
Press, 2004.
28. M. S. Joshi, C++ Design Patterns and Derivative Pricing, Cambridge University
Press, United Kingdom, 2004, ISBN: 0521832357.
29. N. Hilber, O. Reichmann, C. Schwab, C. Winter, Computational Methods for
Quantitative Finance: Finite Element Methods for Derivative Pricing, Springer Finance,
2013, ISBN-10: 3642354009, ISBN-13: 978-3642354007.
30. S. Howison, Barrier options in the Black-Scholes framework,
http://people.maths.ox.ac.uk/howison/barriers.pdf
31. J. C. Hull: Options, Futures & Other Derivatives with DerivaGem CD (8th
Edition), Prentice Hall, 12 February, 2011.
32. D. Jun, Continuity correction for discrete barrier options with two barriers,
Journal of Computational and Applied Mathematics, Vol. 237, Issue 1, 1 January 2013,
520-528
http://www.sciencedirect.com/science/article/pii/S0377042712002567
33. R. Kangro, R. Nicolaides, Far field boundary conditions for Black-Scholes
equations, SIAM Journal. on Numerical Analysis, 38 (4), 1357 – 1368, 2000.
34. J. Kienitz, D. Wetterau, Financial Modelling: Theory, Implementation and
Practice with MATLAB Source, The Wiley Finance Series, Wiley; 1 edition, 1 March 2013,
ISBN-10: 9780470744895, ISBN-13: 978-0470744895.
35. P. Kohl-Landgraf, PDE Valuation of Interest Rate Derivatives, 2007, ISBN-10:
3833495375, ISBN-13: 978-3833495373.
36. M. N. Koleva, L. G. Vulkov, A Splitting Numerical Scheme for Non-Linear
Models of Mathematical Finance, Lecture Notes in Computer Science, accepted 2013
37. M. N. Koleva, Positivity-preserving Numerical Method for Non-linear BlackScholes models, Lecture Notes in Computer Science, accepted 2013
38. Y. K. Kwok, Mathematical Models of Financial Derivatives, Springer-Verlag,
Heidelberg, 1998.
39. E. Larsson, K. Ahlander, A. Hall, Multi-dimensional option pricing using radial
basis functions and the generalized Fourier transform, Journal of Computational and
Applied Mathematics, Vol. 222, Issue 1, 175–192, 2008,
http://www.sciencedirect.com/science/article/pii/S0377042707005560
40. G. Levy, Computational Finance: Numerical Methods for Pricing Financial
Instruments, Butterworth-Heinemann, 2004, ISBN-10: 0750657227, ISBN-13: 978-
0750657228.
41. I-Liang Chern, Lecture Notes of Financial Mathematics, Department of
Mathematics, http://scicomp.math.ntu.edu.tw/wiki/images/e/ec/Finance.pdf, National
Taiwan University, http://scicomp.math.ntu.edu.tw/wiki/index.php/Courses.
42. P. Lin, J. J. H. Miller, G. I. Shishkin, Analytic and Experimental Studies of the
Errors in Numerical Methods for the Valuation of Options, Numerical Mathematics: Theory,
Methods and Applications, 1, 150-164, 2008.
43. F. Longstaff, E. Schwartz., Valuing American Options by Simulation: A Simple
Least-Squares Approach, Review of Financial Studies, 14 (1), 113–147, 2001.
44. A. Marchev Jr, A. Marchev: Cybernetic approach to selecting models for
simulation and management of investment portfolios, Proceedings of 2010 IEEE
International Conference on Systems, Man and Cybernatics, 10-13 October, Instanbul
Turkey, ISSN 1062-922X.
45. M. Milev, A. Tagliani, Quantitative Methods for Pricing Options with Exotic
Characteristics and under Non-standard Hypotheses, Eudaimonia Production Ltd., 79
Rakovski Street, Sofia 1000, 2012, ISBN: 978-954-92924-1-1.
46. D. L. McLeish, Monte Carlo Simulation and Finance, John Wiley & Sons, New
Jersey, 2005.
47. M. Milev, I. Alexieva, N. Penev, Option Pricing Methods in Finance: A
Contemporary Survey of Asset Prices, ‘Vanguard Scientific Instruments in Management
2011’ Vol. 1 (4), 9-28, 2011, ISSN: 1314-0582, http://vsim-conf.info/
48. M. Milev, A. Tagliani, Efficient Implicit Scheme with Positivity-Preserving and
Smoothing Properties, Journal of Computational and Applied Mathematics, 243, 1-9, 2013,
ISSN: 0377-0427
http://www.sciencedirect.com/science/article/pii/S0377042712004128
49. M. Milev, A. Tagliani, Numerical Valuation of Discrete Barrier Options, Journal
of Computational and Applied Mathematics, Vol. 233 (n.10), 2468-2480, 2010. ISSN:
0377-0427, doi: 10.1016/j.cam.2009.10.029, MathSciNet: MR2577836 (2011c:91243), Zbl
1182.91204
http://www.sciencedirect.com/science/article/pii/S0377042709007274
50. M. Milev, A. Tagliani, Nonstandard Finite Difference Schemes with Application
to Finance: Option Pricing, Serdica Mathematical Journal, Vol. 36 (n.1) (2010), 75-88,
ISSN: 1310-6600, MathSciNet: MR2675129 (2011e:65144), (Reviewer: Paolo Foschi),
http://www.math.bas.bg/serdica/n1_10.html
51. M. Milev, A. Tagliani, Low Volatility Options and Numerical Diffusion of Finite
Difference Schemes, Serdica Mathematical Journal, Vol. 36 (n.3) (2010), 223-236, ISSN:
1310-6600, MathSciNet: MR2841509
http://www.math.bas.bg/serdica/n3_10.html
52. М. Милев, Приложение на MATLAB за моделиране и анализ на финансови
деривати (ръководство по иконометрия), „Евдемония продъкшън”, България,
София 2012, ISBN: 978-954-92924-2-8, 102 pages.
53. М. Милев, Н. Милев, Евристични методи за симулиране на ценови пътеки в
моделите на Блак-Шолс и Мертон, ‘Vanguard Scientific Instruments in Management’
Vol. 1 (6), p. , 2013, ISSN: 1314-0582, http://vsim-conf.info/
54. M. Milev, Extension of the Black-Scholes Model: Merton and Exponential Lèvy
Models, ‘Vanguard Scientific Instruments in Management 2011’, Vol. 1 (5), 4-31, 2012,
ISSN: 1314-0582, http://issuu.com/angelmarchev/docs/vsim_vol1_2012
55. M. Milev, M. Peeva, Classification and Importance of Barrier Options,
Proceedings of the International Conference: ‘Contemporary Management Practices’,
Burgas Free University - Burgas, Bulgaria, 330 - 337, 10-11 February, 2012 г,
(Международна конференция „Съвременни управленски практики VII - Проекти и
региони”), 10-11 Февруари 2012 г, Бургаски Свободен Университет,
http://bfu.bg/index.php?q=node/1763
56. J.C. Ndogmo, D.B. Ntwigab, High-order accurate implicit methods for barrier
option pricing, Applied Mathematics and Computation, Vol. 218, Issue 5, 1 November
2011, 2210–2224
http://www.sciencedirect.com/science/article/pii/S0096300311009702
57. G. H. Meyer, Pricing options with transaction costs with the method of lines, in:
M. Otani (Ed.), Nonlinear Evaluation Equations and Applications, Kokyuruku, vol. 1061,
RIMS Kyoto University, 1998
http://people.math.gatech.edu/~meyer/PUBS/priceopt.pdf
58. A. Pelsser, Pricing Double Barrier Options Using Laplace Transforms, Finance
and Stochastics, Vol. 4, 95-104, 2000, Springer-Verlag
http://link.springer.com/article/10.1007/s007800050005#page-1.
59. U. Pettersson, E. Larsson, G. Marcusson, J. Persson, Improved radial basis
function methods for multi-dimensional option pricing, Journal of Computational and
Applied Mathematics, Vol. 222, Issue 1, 82–93, 2008,
http://www.sciencedirect.com/science/article/pii/S037704270700550X
60. D. M. Pooley, K. R. Vetzaly, P. A. Forsyth, Convergence Remedies For NonSmooth Payoffs in Option Pricing, Journal of Computational Finance, 6, 25–40, 2003,
https://cs.uwaterloo.ca/~paforsyt/report.pdf
61. A. Pascucci, PDE and Martingale Methods in Option Pricing, Bocconi &
Springer Series, Springer; 2011 edition, 2011, ISBN-10: 8847017807, ISBN-13: 978-
8847017801.
62. G. T. Santos, M. C. de Souza, M. Fortes, Use of Radial Basis Functions for
Meshless Numerical Solutions Applied to Financial Engineering Barrier Options, Pesquisa
Operacional, 29 (2), 419–437, 2009.
63. R. Seydel, Tools for Computational Finance, Springer, 2nd edition, 2004.
64. Chao Sun, Jing-Yang Yang, Sheng-Hong Li, On barrier option pricing in
binomial market with transaction costs, Applied Mathematics and Computation, Vol. 189,
2, 2007, 1505–1516
http://www.sciencedirect.com/science/article/pii/S0096300306017383
65. A. Tagliani, M. Milev, Laplace Transform and Finite Difference Methods for the
Black-Scholes Equation, Applied Mathematics and Computations, Vol. 220, 1 September
2013, Pages 649–658, ISSN: 0096-3003, doi: 10.1016/j.amc.2013.07.011,
http://www.sciencedirect.com/science/article/pii/S0096300313007613
66. A. Tagliani, H. Gzyl, M. Milev, Laplace Transform Inversion on the Real Line is
Truly Ill-Conditioned, Applied Mathematics and Computation, Vol.219, 18, 2013, 9805-
9809
http://www.sciencedirect.com/science/article/pii/S0096300313003731
67. D. Tavella, C. Randall, Pricing Financial Instruments: The Finite Difference
Method, John Wiley & Sons, New York, 2000.
68. D. Tavella, Quantitative Methods in Derivatives Pricing: An Introduction to
Computational Finance, Series: Wiley Finance, 2002, ISBN-10: 0471394475.
69 N. Thakoor, D. Y. Tangman, M. Bhuruth, Efficient and high accuracy pricing of
barrier options under the CEV diffusion, Journal of Computational and Applied
Mathematics, 2013
http://www.sciencedirect.com/science/article/pii/S0377042713002720
70. M. H. Vellekoop, J. W. Nieuwenhuis, Efficient Pricing of Derivatives on Assets
with Discrete Dividends, Applied Mathematical Finance, Vol. 13, No. 3, 265 - 284, 2006.
71. R. Zvan, K. R. Vetzal, P.A. Forsyth, PDE methods for pricing barrier options,
Journal of Economic Dynamics and Control, Vol. 24, Issues 11–12, 2000, 1563–1590,
http://www.sciencedirect.com/science/article/pii/S0165188900000026
72. K. Zhanga, S. Wangb, Pricing options under jump diffusion processes with fitted
finite volume method, Applied Mathematics and Computation, Vol. 201, Issues 1–2, 15
July 2008, 398–413
http://www.sciencedirect.com/science/article/pii/S0096300307012179
73. P. Wilmott, S. Howison, J. Dewynne. The Mathematics of Financial Derivatives,
Cambridge University Press, 1995.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By submitting a paper for publishing the authors hereby comply with the following provisions: 1. The authors retain the copyrights and only give the journal the right for first publication while licensing the work under Creative Commons Attribution License, which grants permissions to others to share the contribution citing this journal as first publication of the text. 2. The authors may enter separate, additional contractual relations for non-exclusive distribution of the published version of the work in this journal (e.g. to upload it in an institutional depository, or to be published in a book), given that they cite the first publication in this journal. 3. The authors are allowed and are encouraged to publish their works online (e.g. to upload it in an institutional depository, personal websites, social networks, etc.) before, during, and after the submission of the paper here, because this may lead to productive exchange, as well as earlier and larger referencing of the published works (see The Effect of Open Access).