ACCURATE VALUATION OF FINANCIAL OPTIONS BY EFFICIENT SIMULATION OF PROBABILITY DISTRIBUTIONS

  • Станимир Кабаиванов
  • Veneta Markovska
  • Mariyan Milev
Keywords: financial modelling, option analysis, probability distributions, stochastic processes, Ornstein-Uhlenbeck

Abstract

In this paper we analyze possible implementations and applications of
Ornstein-Uhlenbeck (O-U) process and probability distributions for valuation of option
contracts. Based on specific features and types of options we specify the advantages and
disadvantages of O-U based simulation for using it as a universal method to asses
different financial options. Implementation of a simulation code that uses pseudo random
number generation is suggested and tested to confirm its accuracy and effectiveness in
providing results that comply with and are very close to theoretically computer values for
an Ornstein-Uhlenbeck process.

References

Boost Random. (2013, 10 06). Retrieved from Boost:
http://www.boost.org/doc/libs/1_54_0/doc/html/boost_random.html
Box, G., & Muller, M. E. (1958). A Note on the Generation of Random Normal
Deviates. The Annals of Mathematical Statistics, 29(2), 610–611.
Clearing, C. O. (1994). Characteristics & Risks of Standardized Options. Options
Clearing Corporation.
Clyde, M. F., & Stamp, M. (1998, February). Classification and realization of
pseudo-random number generators. Systems & Control Letters, 14(2), 169–175.
Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A Theory of the Term Structure of
Interest Rates. Econometrica(53), 385–407.
Ekeland, I. (1996). The Broken Dice, and Other Mathematical Tales of Chance.
Chicago: University of Chicago Press.
Gawer, J. (2010). Corporate governance, biases and stock returns. Конференция
на Copenhagen Business School. Copenhagen: Печатница на Copenhagen Business
School.
Gilchrist, А., Allouche, Е., & D., C. (2003). Prediction and Mitigation of Construction.
Canadian Journal of Civil Engineering, 30(4), 659.
Gillespie, D. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck process
and its integral. Physical review, 2084–2091.
Group, N. W. (2005, June). Randomness Requirements for Security. Retrieved from
IETF: http://tools.ietf.org/html/rfc4086
Ingali, L., & Kwak, Y. H. (2007, 9). Exploring Monte Carlo Simulation Applications in
Project Management. Risk Management, pp. 44-57.
Kloeden, P. E., & Platen, E. (1992). Numerical Solution of Stochastic Differential
Equations (Stochastic Modelling and Applied Probability). Springer.
Kou, S. G. (2008). Discrete Barrier and Lookback Options. In J. B. (Eds.),
Handbooks in OR & MS (pp. 343-347). Elsevier B.V.
Manzan, S. (2007). Nonlinear Mean Reversion in Stock Prices. Quantitative and
Qualitative Analysis in Social Sciences, I(3), 1-20.
Normal Distribution. (2013, 10 06). Retrieved from Boost Random:
http://www.boost.org/doc/libs/1_52_0/boost/random/normal_distribution.hpp
Pierre-Olivier Gourinchas, M. O. (2011). Stories of the Twentieth Century for the
Twenty-First. NATIONAL BUREAU OF ECONOMIC RESEARCH, (pp. 2-7). Cambridge.
Smith, W. (2010, February). On the Simulation and Estimation of the MeanReverting: Especially as Applied to Commodities Markets and Modelling. Retrieved from
Commodity Models:
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0C
CoQFjAA&url=http%3A%2F%2Fcommoditymodels.files.wordpress.com%2F2010%2F02%
2Festimating-the-parameters-of-a-mean-reverting-ornstein-uhlenbeckprocess1.pdf&ei=9f5bUt_IHsHXtAaEdw&us
Spierdijk, L., Bikker, J. A., & van den Hoek, P. (2011). Mean Reversion in
International Stock Markets: An Empirical Analysis of the 20th Century. De Nederlandsche
Bank Working Paper No. 247, 1-46.
std::mersenne_twister_engine. (n.d.). Retrieved from CPPREFERENCE.COM:
http://en.cppreference.com/w/cpp/numeric/random/mersenne_twister_engine
Taleb, N. N. (2012). Antifragile: Things That Gain from Disorder. New York:
Random House.
Tilley, J. A. (1994). Valuing American options in a path simulation model.
Transactions of the Society of Actuaries, 104.
Vecer, J. (2002). Unified Pricing of Asian Options. 2-3.
Published
2023-02-03
How to Cite
Кабаиванов, С., Markovska, V., & Milev, M. (2023). ACCURATE VALUATION OF FINANCIAL OPTIONS BY EFFICIENT SIMULATION OF PROBABILITY DISTRIBUTIONS. Vanguard Scientific Instruments in Management, 7(7). Retrieved from https://vsim-journal.info/index.php?journal=vsim&page=article&op=view&path[]=425