HEURISTIC METHODS FOR SIMULATION OF ASSET PATHS IN THE BLACK-SCHOLES MODEL
Abstract
In this paper we explore a straightforward procedure for pricing financial
derivatives by means of the famous Monte Carlo method when the underlying asset
follows a jump-diffusion process. The Black-Scholes model is compared with one of its
extensions, the Merton model, that is better in capturing the market and is comparative to
stochastic volatility models in terms of pricing accuracy. By simulations of asset paths with
the Monte Carlo method we price efficiently and accurately the premium of options with
barriers.
References
Economy, 81 (1973), 637 - 659.
2. P. Boyle, M. Broadie, P. Glasserman: Monte Carlo Methods for Security Pricing, Journal of
Economic Dynamics and Control, 121, (1997), 1267 - 1321.
3. R. Cont, P. Tankov: Financial Modelling with Jump Processes, Chapman & Hall, 2004.
4. P. Glassermann: Monte Carlo Methods in Financial Engineering, Springer, N.York, 2004.
5. D. Higham: An Introduction to Financial Option Valuation, Cambridge Univ. Press, 2004.
6. J. C. Hull: Options, Futures & Other Derivatives with DerivaGem CD (8th Edition), Prentice Hall,
12 February, 2011.
7. Y. Kwok: Mathematical Models of Financial Derivatives, Springer-Verlag, 1998.
8. A. Marchev Jr, A. Marchev: Cybernetic approach to selecting models for simulation and
management of investment portfolios, Procedings of 2010 IEEE International Conference on
Systems, Man and Cybernatics, 10-13 October, Instanbul Turkey, ISSN 1062-922X.
9. R. C. Merton: Option pricing when underlying stock returns are discontinuous, Journal of
Financial Economics, 3 (1976), 125 - 144.
10. D. McLeish: Monte Carlo Simulation and Finance, John Wiley & Sons, N. Jersey, 2005.
11. M. Milev, A. Tagliani: Numerical valuation of discrete double barrier options, Journal of
Computational and Applied Mathematics, 233 (n.10) (2010), 2468 - 2480.
12. M. Milev, M. Peeva, Classification and Importance of Barrier Options, Proceedings of the
International Conference: ‘Contemporary Management Practices VII’, 330-337, ISSN 1313-
8758, Burgas Free University - Burgas, Bulgaria, 10-11 February, 2012
13. M. Milev, A. Tagliani, Nonstandard Finite Difference Schemes with Application to Finance:
Option Pricing, Serdica Mathematical J., Vol. 36 (n.1) (2010), 75-88, ISSN: 1310-6600,
MathSciNet: MR2675129 (2011e:65144).
14. M. Milev, Extension of the Black-Scholes Model: Merton and Exponential Lèvy Models,
‘Vanguard Scient. Instruments in Management 2011’ Vol. 1(5), 4-31, 2012, ISSN: 1314-0582
15. M. Milev, A. Tagliani, Quantitative Methods for Pricing Options with Exotic Characteristics and
under Non-standard Hypotheses, Eudaimonia Production Ltd., 2012, ISBN: 978-954-92924-1-
1, (Количествени методи за оценяване на опции с екзотични характеристики при
нестандартни хипотези, монография на английски, 252 стр.)
16. М. Милев, Приложение на MATLAB за моделиране и анализ на финансови деривати
(ръководство по иконометрия), „Евдемония продъкшън”, София, 2012, ISBN: 978-954-
92924-2-8
17. С. Иванова, И. Милкова - Томова, Д. Бояджиев, П. Георгиева, Математико –
статистическо моделиране на физико –химични показатели на многократно термично
обработени мазнини. (Дисперсионен анализ на показатели на фритюрна мазнина от
маслиново масло при многократно използване), Сборник с докладите от деветата
национална научна – техническа конференция, Академично издателство на Аграрния
университет, Пловдив, стр. 405 – 410, 2012, ISSN 1314 – 1880.
18. И. Милкова-Томова, С. Иванова, Д. Бояджиев, П. Георгиева, Матемамтико –
статистическое моделирование физико – химических показателей фритюрного жира и
дисперсионный анализ показателей фритюрного жира растительного происхождения.
Одеська национальна академия, харчових технологии науков. Праць, 42, 2, Одеса, 403 –
406. ISSN 2073-8730.
19. Илиана Милкова-Томова, Дойчин Бояджиев, Йорданка Алексиева, Пенка Георгиева,
Математико-статистическо моделиране на емулсионни продукти с различни сухи млечни
емулгатори. I. Статистически характеристики на емулсионни продукти с различни сухи
млечни емулгатори. Научни трудове, Серия Б, Естествени и хуманитарни науки, т.XIV,
2012,Съюз на учените България, Пловдив, стр. 193-196, ISSN 1311-9192.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By submitting a paper for publishing the authors hereby comply with the following provisions: 1. The authors retain the copyrights and only give the journal the right for first publication while licensing the work under Creative Commons Attribution License, which grants permissions to others to share the contribution citing this journal as first publication of the text. 2. The authors may enter separate, additional contractual relations for non-exclusive distribution of the published version of the work in this journal (e.g. to upload it in an institutional depository, or to be published in a book), given that they cite the first publication in this journal. 3. The authors are allowed and are encouraged to publish their works online (e.g. to upload it in an institutional depository, personal websites, social networks, etc.) before, during, and after the submission of the paper here, because this may lead to productive exchange, as well as earlier and larger referencing of the published works (see The Effect of Open Access).